LOYOLA COLLEGE (AUTONOMOUS), CHENNAI- 6000034

M.Sc. DEGREE EXAMINATION- MATHEMATICS

I SEMESTER - NOVEMBER 2014
MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS
TIME: Forenoon / Afternoon
DATE:
MAX: 100 MARKS

Answer all questions. Each question carries $\mathbf{2 0}$ marks.

1. (a) Prove that $x(t)=x_{p}(t)+x_{h}(t)$ is the general solution of $L[x(t)]=d(t)$ where $x_{p}(t)$ is any particular solution of $L[x(t)]=d(t)$ and $x_{h}(t)$ is the general solution of the homogeneous equation $L[x(t)]=0$.
(b) Prove that $u L(v)-v L(u)=a_{0}(t) \frac{d}{d t} W[u, v]+a_{1}(t) W[u, v]$, where u, v are twice differentiable functions and a_{0}, a_{1} are continuous on I.
(c) Explain the method of variation of parameters.
(OR)
(d) Determine whether the given sets of functions are linearly dependent or independent.
(i) e^{x}, e^{-x} (ii) $1+x, 1-x, 1-3 x$ (iii) $\sin x, \sin 2 x, \sin 3 x$ on $I=[0,2 \pi]$
(iv) $1+x, x^{2}+x, 2 x^{2}-x-3$ and (v) $1, x, x^{2}, \ldots, x^{n}$
2. (a) Find the Legendre polynomial of first four orders.
(OR)
(b) State and prove Rodrigure's formula.
(c) Show that $\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x)$ if $|t|<1$ and $|x| \leq 1$.
(OR)
(d) Solve by Frobenius method: $x^{2} \frac{d^{2} y}{d x^{2}}+\left(x^{3}-2 x\right) \frac{d y}{d x}+2 y=0$.
3. (a) When n is an integer (positive or negative), show that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.
(OR)
(b) State and prove any two recurrence relations on Bessel's function.
(c) State and prove the integral representation of Bessels's function.
(OR)
(d) With usual notation, prove that $P_{n}(x)={ }_{2} F_{1}\left(-n, n+1 ; 1 ; \frac{1-x}{2}\right)$.
4. (a) Using the method of successive approximations, solve the initial value problem $x^{\prime}=-x, x(0)=1, t \geq 0$.
(b) For the parameters, λ and $\mu(\lambda \neq \mu)$, let x and y be the corresponding solutions of the Strum-Liouville problem such that $[p W(x, y)]_{A}^{B}=0$. Prove that $\int_{A}^{B} r(s) x(s) y(s) d s=0$.
(c) State Green's function and prove that $x(t)$ is a solution of $L[x(t)]+f(t)=0$, $a \leq t \leq b$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$.
(OR)
(d) State and prove Picard's theorem for boundary value problem.
5. (a) Prove that the null solution of equation $x^{\prime}=A(t) x$ is stable if and only if a positive constant k exists such that $|\phi(t)| \leq k, t \geq t_{0}$.
(OR)
(b) Explain asymptotically stable solution by an example.
(c) Explain the stability of $x^{\prime}=A x$ by Lyapunov's method.
(OR)
(d) State and prove the fundamental theorems on the stability of non-autonomous systems.
